Morphological Changes of Pressure Pulses in Oscillometric Non-Invasive Blood Pressure Measurements

Viktor Avbelj

Department of Communication Systems, Jožef Stefan Institute, Ljubljana, Slovenia
email: viktor.avbelj@ijs.si
Scope

- Non-invasive blood pressure measurements
 - auscultatory method
 - oscillometric method
- Pressure pulses in the cuff
- Morphology of the pressure pulses
- Conclusions
Non-invasive blood pressure measurements

HYSTORY OF AUSCULTATORY METHOD

- **Scipione Riva-Rocci (1863-1937)**
 - Italian internist and pediatrician
 - method (1896): cuff and mercury sphygmomanometer
 - palpation of radial pulse (systolic pressure)

- **Nikolai Sergeyevich Korotkoff (1874-1920)**
 - Russian surgeon
 - technique was reported in less than a page (1905)
 - listening with stethoscope to the artery just below the Riva-Rocci’s cuff
 - systolic and diastolic pressure

- Nowadays auscultatory method is the “golden standard”
 - Name of the method is “Riva-Rocci and Korotkoff”
 - essentially the same as described by Korotkoff
Non-invasive blood pressure measurements

OSCILLOMETRIC METHOD

- Étienne-Jules Marey (1830-1904)
 - French physiologist (studied blood circulation, heart beats, …)
 - method introduced in 1876
 - arm was placed in compression chamber
 - amplitude of pressure pulsations varied with pressure in chamber

- Automatic measurements
 - auscultatory method – difficulties with sound processing
 - oscillometric method – widely used

MAP mean arterial pressure
SYS systolic pressure
DIA diastolic pressure

Pressure pulses in the cuff

Automatic oscillometric measurement – details

Pressure in the cuff during the complete measurement cycle.

Raw oscillometric signal - deviations from the down-sloping deflation pressure.

Example (empirically derived values)
- MAP = pressure at max envelope amplitude
- SYS = pressure at 0.5*max env. amplitude
- DIA = pressure at 0.7*max env. amplitude
Morphology of the pressure pulses (1/2)

Subject with normal blood pressure

“Omron” values: SBP = 93 mmHg, DBP = 62 mmHg

Description of morphology of successive pulse waves

Beats -9, -8, -7, -6: 3 distinct waves

Beat -5: 3 distinct waves (first with higher amplitude)

Beat -4: 3 waves where the first 2 waves are fused

Beats -3, -2: single peak wave with fast down-slope

Beat -1: single peak wave modulated by 3 waves, fast down-slope

Beat M: single peak wave modulated by 3 waves, fast down-slope

Beat +1: lower down-slope than M

Beats +2, +3, +4, +5, +6: similar morphologies with progressively lower amplitudes and down-slope constants

Graph

- Time from the start of each wave [s]
- Pressure deviation [mmHg]

Graph showing various wave forms with labels from -9 to +6.
Morphology of the pressure pulses (2/2)

Subject with high blood pressure

“Omron” values: SBP = 144 mmHg, DBP = 90 mmHg

Description of morphology of successive pulse waves

Beats -14, -13: 3 distinct waves
Beat -12 … -5: fast down-slope portion
Beat -4 … -1: down-slope portion needs progressively more time to the baseline
Beats -3, -2, -1, +1: amplitudes are nearly the same as pulse M
Beats -1, M: significant distinction between pulses (beat M have slope transition at time 0.32 s, but beat -1 has no such transition)
Conclusions

- Morphology of pressure pulses has additional information
 - Pulses before the pulse M and after it have different morphologies
 - Distinct 3 waves are present at high cuff pressure
 - Positions of these waves depend on subject (pulse wave velocity)
 - In case of similar amplitudes the morphology discriminate the pulses

- Using additional information in the morphology can result in
 - better accuracy of SBP and DBP values
 - pulse wave velocity measurements
 - arterial compliance measurements (elasticity)

- It is not worth throwing away the information by smoothing the signals