
Mjolnirr: private PaaS as distributed computing

evolution

Gleb Radchenko, Dmitry Savchenko

gleb.radchenko@susu.ru

South Ural State University, Russia

Page 2/14

29 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Problem definition

• Cloud computing enables resource providers to
reduce support and integration costs, using elastic
resource management

• But public cloud platforms raise a security
concern: data is stored and processed remotely.

• Private clouds are the only option for the company
that want to provide computing resources inside
the company

– But most of existing private cloud solutions provide
IaaS level of clouds that often require complicated
procedures for support and usage of resources

Page 3/14

29 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Requirements

• Mjolnirr platform – solution for Java-based
private PaaS systems deployment:
– Provide an API to enable programmers to write

new modules easily

– Supports component-oriented loose-coupled
system architecture

– Provides automation of components distribution
and deployment

– Component containers can work not only on
server hardware, but on end-user PCs

– Provides integration with the UNICORE grid
services

Page 4/14

29 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Mjolnirr platform Architecture

Page 5/14

29 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Architecture: Proxy

Page 6/14

29 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Architecture: Container

Page 7/14

29 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Development: Components

• Two types of custom components:

– Application component provides user interface, scripts
and styles as static files, as well as processing logic.

– Module component represents a single entity in the
application domain.

• Developer:

– Creates a components on the basis of provided API

– Uploads the component to a Proxy, using the web-
interface

• The component instances are deployed on
containers automatically

Page 8/14

29 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Development: Component interface

@MjolnirrComponent(

componentName = "calculator",

instancesMinCount = 1,

instancesMaxCount = 255,

memoryVolume = 128)

public class Calculator extends AbstractApplication {

private ComponentContext context;

@MjolnirrMethod

public String calculate(String expression)

throws Exception {

return Helper.calculate(expression);

}

@Override

public void initialize(ComponentContext context) {

this.context = context;

}
}

Page 9/14

29 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Development: Component UI

function calc() {

var inputField = $("#calculator-string");

try {

inputField.val(callRemoteMethodSync({

method: "calculate"

, args: [inputField.val()]}));

} catch (err) {

bootbox.alert(err);

}}

• You can use jade as web-
template engine and
JavaScript to develop
interactive UI

Page 10/14

29 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Administrative UI

Page 11/14

29 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Application execution

Page 12/14

29 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Performance evaluation

• 1 gigabyte of text data was divided on 100

parts and sent to all available worker

components for processing.

• Each worker divide text on words and

count a frequency of each unique word.

Pieces of work were distributed

automatically – each worker polled

Message Bus to receive new task.

Page 13/14

29 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Performance evaluation

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Ex
e

cu
ti

o
n

 t
im

e
, s

.

Nodes count

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

A
cc

e
le

ra
ti

o
n

Nodes count

Experiments have shown that the platform is stable.
Average execution time on 10 containers was 219
seconds. Thus, acceleration of parallel word frequency
counter task was 5.3.

Page 14/14

29 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Results

• We developed an architecture and implementation of the
Mjolnirr platform

• The tests shown, that the system is stable, provides effective
loose coupling components development

• As a development of this project, we are planning to provide:
– Application-level migration support to provide system stability;

– Resource monitoring for flexible load balancing;

– Global component store to reduce the number of the duplicate
applications;

– Integration modules for DBMS and distributed file-management
systems.

• All sources are available on BitBucket:
– https://bitbucket.org/mjolnirr/mjolnirr/src

• Contact: gleb.radchenko@susu.ru

https://bitbucket.org/mjolnirr/mjolnirr/src
mailto:gleb.radchenko@susu.ru

