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Problem definition

• Cloud computing enables resource providers to 
reduce support and integration costs, using elastic 
resource management

• But public cloud platforms raise a security 
concern: data is stored and processed remotely.

• Private clouds are the only option for the company 
that want to provide computing resources inside 
the company

– But most of existing private cloud solutions provide 
IaaS level of clouds that often require complicated 
procedures for support and usage of resources
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Requirements

• Mjolnirr platform – solution for Java-based 
private PaaS systems deployment:
– Provide an API to enable programmers to write 

new modules easily

– Supports component-oriented loose-coupled 
system architecture

– Provides automation of components distribution 
and deployment

– Component containers can work not only on 
server hardware, but on end-user PCs

– Provides integration with the UNICORE grid 
services
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Mjolnirr platform Architecture
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Architecture: Proxy
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Architecture: Container
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Development: Components

• Two types of custom components:

– Application component provides user interface, scripts 
and styles as static files, as well as processing logic.

– Module component represents a single entity in the 
application domain. 

• Developer:

– Creates a components on the basis of provided API

– Uploads the component to a Proxy, using the web-
interface

• The component instances are deployed on 
containers automatically
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Development: Component interface

@MjolnirrComponent(

componentName = "calculator",

instancesMinCount = 1,

instancesMaxCount = 255,

memoryVolume = 128)

public class Calculator extends AbstractApplication {

private ComponentContext context;

@MjolnirrMethod

public String calculate(String expression)

throws Exception {

return Helper.calculate(expression);

}

@Override

public void initialize(ComponentContext context) {

this.context = context;

}
}
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Development: Component UI

function calc() {

var inputField = $("#calculator-string");

try {

inputField.val(callRemoteMethodSync({

method: "calculate"

, args: [ inputField.val() ]}));

} catch (err) {

bootbox.alert(err);

}}

• You can use jade as web-
template engine and 
JavaScript to develop 
interactive UI
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Administrative UI
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Application execution
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Performance evaluation

• 1 gigabyte of text data was divided on 100 

parts and sent to all available worker 

components for processing. 

• Each worker divide text on words and 

count a frequency of each unique word. 

Pieces of work were distributed 

automatically – each worker polled 

Message Bus to receive new task.
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Performance evaluation
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Experiments have shown that the platform is stable. 
Average execution time on 10 containers was 219
seconds. Thus, acceleration of parallel word frequency 
counter task was 5.3.
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Results

• We developed an architecture and implementation of the 
Mjolnirr platform

• The tests shown, that the system is stable, provides effective 
loose coupling components development

• As a development of this project, we are planning to provide:
– Application-level migration support to provide system stability;

– Resource monitoring for flexible load balancing;

– Global component store to reduce the number of the duplicate 
applications;

– Integration modules for DBMS and distributed file-management 
systems.

• All sources are available on BitBucket:
– https://bitbucket.org/mjolnirr/mjolnirr/src

• Contact: gleb.radchenko@susu.ru

https://bitbucket.org/mjolnirr/mjolnirr/src
mailto:gleb.radchenko@susu.ru

