
Improving Data-Parallel Construction of Dn-Nets
with Maximum Dispersion

Peter Zinterhof, Dept. of Scientific Computing, University of Salzburg

peter.zinterhof3@sbg.ac.at

Page 2

21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Data-parallel construction of Dn-Nets

Motivation
Joint project: SALK (Salzburger Uniklinik)
Computed Tomography (CAT scans)

Task: Image Segmentation
-> detection of cysts in the body

Page 3

21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Sample CAT-
scan:

~ 500 patients , 200 – 300 slices
per patient
Trainings set: ~ 140.000 slices

Ground truth:
Kidneys + cysts marked
manually

Page 4

21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

CAT scan segmentation

Principal Component Analysis
algorithmic creation of 64x64 pixel-patches
auto-correlation matrix
Eigensystem -> preserve 32 most emminent
vectors

Code book
10 – 20 mio. Entries (vectors of 32
floats+labelling data)

Page 5

21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Image Segmentation:

Convolution of new patient‘s CAT scan Code
book vectors

Millions of
labelled vectors

Y

~ 50.000
vectors X per

slice

Task: For each new patch X find nearest neighbor in Y and assign
corresponding label Y_label.

Page 6

21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Speeding up the Process:

Options:

Parallel and distributed computing (clusters)

Novel hardware -> GPGPU, CELL BE,
FPGA

Page 7

21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Speedup the Process

Options:

Parallel and distributed computing (clusters)

Novel hardware -> GPGPU, CELL BE, FPGA

Reduction of code book size -> reduce workload per
(kD-trees, sorting, etc. does not work -> curse of
dimensionality)

 Dn-Nets with Maximum Dispersion

Page 8

21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Mathematical concept of Dn-Nets

Metric Dispersion

Dn-Net over finite metric space E
approximates high-dimensional data up
to some arbitrary error e

Simpler interpretation: Dn is the radius of
the largest hyper-sphere, that fits within
(x1,x2,.., xn).

Page 9

21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Construction of Dn-Nets

Choose two seed points (x1, x2) with
d(x1,x2) = max (d(dx, dy)) for all x,y in E

Iteratively add point x, such that
max(min(d(x,xk),k=1,..,N) is reached.

In other words: at each step we add that
point x to our Dn-Net, which decreases the
value of Dn by the smallest possible
amount.

Page 10

21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Previous work

High computational complexity

Transition from D(n) -> D(n+1): (E-N)N
elementary operations

Total complexity: O(E N^2- N^3)

Elementary operation: euclidean distance
d(x,y)

Page 11

21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Page 12

21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Improved construction of Dn-Nets

Basic idea: instead of (re)computing distances
between potential follow-up vectors Xk for a
given Dn-Net, the minimum distances for
each vector in relation to the Dn-Net are kept
in memory.

Also: in the previous algorithm the order in
which vectors were added to the Dn-Net had
been omitted -> we had to compute distances
(d(DN, xk)) over and over again for each new
vector.

Page 13

21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Previous vs. Improved Algorithm I

x1

x2

X3 ???

Dn-
Net

Code book vectors c_y

d(x1, x2, c_y)

d(x1, x2, c_y)

d(x1, x2,
c_y)

Page 14

21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

d(x1, c1)

d(x1, c2)

d(x1, c3)

d(x1, c4)

....

d(x1,
c12345678)

x1

x2

X3 ???

Dn-
Net

We KNOW x2 already !!!
(because it‘s the second of
our two seed points)

Previous vs. Improved Algorithm II

Distances array D

Distances array D holds the current minimum distances
between Dn-Net and entries c1...cN. The only vector that
can change the whole picture is the follow-up-vector x2.
Thus we only have to compare x2 and the values of
d(x1,cx), no matter how big Dn has already grown.

Page 15

21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Previous vs. Improved Algorithm III

d(x1, c1)

d(x1, c2)

d(x1, c3)

d(x1, c4)

....

d(x1,
c12345678)

x1

x2

X3 ???

Adding x2 involves a simple operation:

For all entries x of the codebook:

Step 1: Cx = min (d(x1,c1), d (x2,c1)) with
d(x1,c1) already stored in the array.

Step 2: find max(Cx) ‚on-the-fly‘ during the
updates, which denotes the next follow-up
vector x_(n+1). We can iteratively feed this
vector into step 1 again and find all follow-
up vectors in linear overall complexity.

Page 16

21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Data-Parallelism

• Total data-independance during update of Distances array D

 -> Computations very well suited for GPGPUs: e.g. CUDA, OpenCL

 Implementation by means of two kernels:

• Find seed points x1, x2
 brute force: for each Cn find max(d(Cn, Cx)), x=(1..codebooksize)
 real world data: ~ 10 – 30 petaflops needed

• Update Distances D

Page 17

21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Results

Computation of some small Dn-Nets on i7 and GPGPU

Page 18

21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Conclusions

We presented an improved algorithm for the construction of Dn-Nets, which results
in a total computational complexity of O(En^2) and linear complexity O(E) in each step.

This new algorithm can be considered a big improvement as it enables the construction of
large DN-Nets that are common in real-world problems, and which could not be tackled
with previous methods even on large clusters of GPGPU-systems.

The presented algorithm lends itself well for GPGPU-execution, which typically enables
additional speedups in the range of 30-40x against single cpu cores and 10x against
many-core CPUs.

Page 19

21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Conclusions

We presented an improved algorithm for the construction of Dn-Nets, which results
in a total computational complexity of O(En^2) and linear complexity O(E) in each step.

This new algorithm can be considered a big improvement as it enables the construction of
large DN-Nets that are common in real-world problems, and which could not be tackled
with previous methods even on large clusters of GPGPU-systems.

The presented algorithm lends itself well for GPGPU-execution, which typically enables
additional speedups in the range of 30-40x against single cpu cores and 10x against
many-core CPUs

 Thank You !

	Slide 1
	Data-parallel construction of Dn-Nets
	Slide 3
	CAT scan segmentation
	Image Segmentation:
	Speeding up the Process:
	Speedup the Process
	Mathematical concept of Dn-Nets
	Construction of Dn-Nets
	Previous work
	Slide 11
	Improved construction of Dn-Nets
	Previous vs. Improved Algorithm I
	Previous vs. Improved Algorithm II
	Previous vs. Improved Algorithm III
	Data-Parallelism
	Results
	Conclusions
	Conclusions

