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Data-parallel construction of Dn-Nets

Motivation
Joint project: SALK (Salzburger Uniklinik)
Computed Tomography (CAT scans)

Task: Image Segmentation
-> detection of cysts in the body




Sample CAT-
scan:

~ 500 patients , 200 - 300 slices
per patient
Trainings set: ~ 140.000 slices

Ground truth:
Kidneys + cysts marked
manually
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CAT scan segmentation

Principal Component Analysis

algorithmic creation of 64x64 pixel-patches
auto-correlation matrix

Eigensystem -> preserve 32 most emminent

vectors

Code book
10 — 20 mio. Entries (vectors of 32
floats+labelling data)
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Image Segmentation:

Convolution of new patient’s CAT scan Code
book vectors

Millions of
labelled vectors
Y

~N_

Task: For each new patch X find nearest neighbor in Y and assign
corresponding label Y_label.
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Speeding up the Process:

Options:

Parallel and distributed computing (clusters)

Novel hardware -> GPGPU, CELL BE,
FPGA
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Speedup the Process

Options:

Parallel and distributed computing (clusters)
Novel hardware -> GPGPU, CELL BE, FPGA

Reduction of code book size -> reduce workload per
(kD-trees, sorting, etc. does not work -> curse of
dimensionality)

Dn-Nets with Maximum Dispersion
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Mathematical concept of Dn-Nets

Metric Dispersion  d(z,y) = (¥ ok - v ?) V2

on = 0(xq, x9,....,xN) = max(min(d(x, z;))
rel

Dn-Net over finite metric space E
approximates high-dimensional data up

to some arbitrary error e

Simpler interpretation: Dn is the radius of
the largest hyper-sphere, that fits within
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Construction of Dn-Nets

Choose two seed points (x1, x2) with
d(x1,x2) = max (d(dx, dy)) for all x,y in E

Iteratively add point x, such that
max(min(d(x,xk),k=1,..,N) is reached.

In other words: at each step we add that
point x to our Dn-Net, which decreases the
value of Dn by the smallest possible
amount.




Previous work

High computational complexity

Transition from D(n) -> D(n+1): (E-N)N
elementary operations

Total complexity: O(E N*2- N*3)
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Improved construction of Dn-Nets

Basic idea: instead of (re)computing distances
between potential follow-up vectors Xk for a
given Dn-Net, the minimum distances for
each vector in relation to the Dn-Net are kept
In memory.

Also: in the previous algorithm the order in
which vectors were added to the Dn-Net had
been omitted -> we had to compute distances
(d(DN, xk)) over and over again for each new
vector.
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Previous vs. Improved Algorithm |

Code book vectors c vy

d(x1, x2,
c_y)
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Previous vs. Improved Algorithm Il

Dn- Distances array D
X2 d(x1, c2)
X3 77?7 d(x1, c3)
d(x1, c4)

We KNOW x2 already !!!
(because it's the second of
our two seed points)

stances array D holds the current minimum distances
tween Dn-Net and entries cl...cN. The only vector that
n change the whole picture is the follow-up-vector x2.
us we only have to compare x2 and the values of
x1,cx), no matter how big Dn has already grown. d(x1,

c12345678)
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Previous vs. Improved Algorithm Il

X2 d(x1, c2)
X3 ?7?? d(x1, c3)
d(x1, c4)

Adding x2 involves a simple operation:
For all entries x of the codebook:

Step 1: Cx = min (d(x1,cl), d (x2,cl)) with
d(x1,cl) already stored in the array.

Step 2: find max(Cx) ,on-the-fly‘ during the

updates, which denotes the next follow-up d(x1,
vector x_(n+1). We can iteratively feed this ¢12345678)
vector into step 1 again and find all follow- v

up vectors in linear overall complexity.
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Data-Parallelism

| data-independance during update of Distances array D
“omputations very well suited for GPGPUs: e.g. CUDA, OpenCL
lementation by means of two kernels:
Find seed points x1, x2
brute force: for each Cn find max(d(Cn, Cx)), x=(1..codebooksize)

real world data: ~ 10 - 30 petaflops needed
Update Distances D
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Results

Computation of some small Dn-Nets on i7 and GPGPU

i7-CPU, | NVIDIA | NVIDIA

2.66 GTX680 | GTX

GHz 480
An-net:50k vectors, 543.94 32.70 51.75
E=100k vectors 1.0x 16.6x% 10.5x
An-net :500k vectors, | 54433.2 | 2642.84 | 2856.46
E=1m vectors 1.0x 20.5x 19.0x
Apn-net:5500 vectors, 7852.6 185.67 24397
E=6.3 mio. vectors 1.0x 42 2% 32.1x
Annet: 15000 vectors. | 21392.8 | 499.56 652.86
E=6.3 mio. vectors 1.0x 42 8x 32.7x
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Conclusions

xsented an improved algorithm for the construction of Dn-Nets, which results
tal computational complexity of O(En”2) and linear complexity O(E) in each ste

ew algorithm can be considered a big improvement as it enables the constructic
DN-Nets that are common in real-world problems, and which could not be tackile
revious methods even on large clusters of GPGPU-systems.

esented algorithm lends itself well for GPGPU-execution, which typically enable:

)nal speedups in the range of 30-40x against single cpu cores and 10x against
core CPUs.
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