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Data-parallel construction of Dn-Nets

Motivation
Joint project: SALK (Salzburger Uniklinik)
Computed Tomography (CAT scans)

Task: Image Segmentation
-> detection of cysts in the body
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Sample CAT-
scan:

~ 500 patients , 200 – 300 slices 
per patient 
Trainings set:  ~ 140.000 slices

Ground truth:
Kidneys + cysts marked 
manually 
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CAT scan segmentation

Principal Component Analysis
algorithmic creation of 64x64 pixel-patches
auto-correlation matrix
Eigensystem -> preserve 32 most emminent 
vectors

Code book 
10 – 20 mio. Entries (vectors of 32 
floats+labelling data)
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Image Segmentation:

Convolution of new patient‘s CAT scan                            Code 
book vectors

Millions of 
labelled vectors 

Y

~ 50.000 
vectors X per 

slice

Task: For each new patch X find nearest neighbor in Y and assign 
corresponding label Y_label. 
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Speeding up the Process:

Options:

Parallel and distributed computing (clusters)

Novel hardware -> GPGPU, CELL BE, 
FPGA
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Speedup the Process

Options:

Parallel and distributed computing (clusters)

Novel hardware -> GPGPU, CELL BE, FPGA

Reduction of code book size -> reduce workload per 
(kD-trees, sorting, etc. does not work -> curse of 
dimensionality)

  Dn-Nets with Maximum Dispersion
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Mathematical concept of Dn-Nets

Metric Dispersion

Dn-Net over finite metric space E  
approximates high-dimensional  data up 
to some arbitrary error e

Simpler interpretation: Dn is the radius of 
the largest hyper-sphere, that fits within 
(x1,x2,.., xn).
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Construction of Dn-Nets

Choose two seed points (x1, x2) with 
d(x1,x2) = max (d(dx, dy)) for all x,y in E

Iteratively add point x, such that 
max(min(d(x,xk),k=1,..,N) is reached.

In other words: at each step we add that 
point x to our Dn-Net, which decreases the 
value of Dn by the smallest possible 
amount.



Page 10

21 May, 2014   DC VIS - Distributed Computing, Visualization and Biomedical Engineering    www.mipro.hr

Previous work

High computational complexity

Transition from D(n) -> D(n+1): (E-N)N 
elementary operations 

Total complexity: O(E N^2- N^3)

Elementary operation: euclidean distance 
d(x,y)
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Improved construction of Dn-Nets

Basic idea: instead of (re)computing distances 
between potential follow-up vectors Xk for a 
given Dn-Net, the minimum distances for 
each vector in relation to the Dn-Net are kept 
in memory.

Also: in the previous algorithm the order in 
which vectors were added to the Dn-Net had 
been omitted -> we had to compute distances 
(d(DN, xk)) over and over again for each new 
vector.
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Previous vs. Improved Algorithm I

x1

x2

X3 ???

Dn-
Net

Code book vectors c_y

d(x1, x2, c_y)

d(x1, x2, c_y)

d(x1, x2, 
c_y)
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d(x1,  c1)

d(x1, c2)

d(x1, c3)

d(x1, c4)

....

d(x1, 
c12345678)

x1

x2

X3 ???

Dn-
Net

We KNOW x2 already !!!
(because it‘s the second of 
our two seed points)

Previous vs. Improved Algorithm II

Distances array D

Distances array D holds the current minimum distances
between Dn-Net and entries c1...cN. The only vector that 
can change the whole picture is the follow-up-vector x2.
Thus we only have to compare x2 and the values of 
d(x1,cx), no matter how big Dn has already grown.
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Previous vs. Improved Algorithm III

d(x1,  c1)

d(x1, c2)

d(x1, c3)

d(x1, c4)

....

d(x1, 
c12345678)

x1

x2

X3 ???

Adding x2 involves a simple operation:

For all entries x of the codebook:

Step 1: Cx = min (d(x1,c1), d (x2,c1)) with 
d(x1,c1) already stored in the array.

Step 2: find max(Cx) ‚on-the-fly‘ during the 
updates, which denotes the next follow-up 
vector x_(n+1).  We can iteratively feed this 
vector into step 1 again and find all follow-
up vectors in linear overall complexity.



Page 16

21 May, 2014   DC VIS - Distributed Computing, Visualization and Biomedical Engineering    www.mipro.hr

Data-Parallelism

• Total data-independance during update of Distances array D

 -> Computations very well suited for GPGPUs: e.g. CUDA, OpenCL

  Implementation by means of two kernels:

•  Find seed points x1, x2
   brute force: for each Cn find max(d(Cn, Cx)), x=(1..codebooksize)
   real world data: ~ 10 – 30 petaflops needed

•  Update Distances D
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Results

Computation of some small Dn-Nets on i7 and GPGPU
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Conclusions

We presented an improved algorithm for the construction of Dn-Nets, which results
in a total computational complexity of O(En^2) and linear complexity O(E) in each step.

This new algorithm can be considered a big improvement as it enables the construction of  
large DN-Nets that are common in real-world problems,  and which could not be tackled
with previous methods even on large clusters of GPGPU-systems.

The presented algorithm lends itself well for GPGPU-execution, which typically enables 
additional speedups in the range of 30-40x against single cpu cores and 10x against 
many-core CPUs.
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Conclusions

We presented an improved algorithm for the construction of Dn-Nets, which results
in a total computational complexity of O(En^2) and linear complexity O(E) in each step.

This new algorithm can be considered a big improvement as it enables the construction of  
large DN-Nets that are common in real-world problems,  and which could not be tackled
with previous methods even on large clusters of GPGPU-systems.

The presented algorithm lends itself well for GPGPU-execution, which typically enables 
additional speedups in the range of 30-40x against single cpu cores and 10x against 
many-core CPUs

                                                            Thank You !


	Slide 1
	Data-parallel construction of Dn-Nets
	Slide 3
	CAT scan segmentation
	Image Segmentation:
	Speeding up the Process:
	Speedup the Process
	Mathematical concept of Dn-Nets
	Construction of Dn-Nets
	Previous work
	Slide 11
	Improved construction of Dn-Nets
	Previous vs. Improved Algorithm I
	Previous vs. Improved Algorithm II
	Previous vs. Improved Algorithm III
	Data-Parallelism
	Results
	Conclusions
	Conclusions

